
IDA2433HLHGH IS 0F THE HISTORY 0F THE LAMBDA-CA ULUS(U U/
W ISCONSIN UNIV MADTSON MATHEMATC S RESEARCH CENTER
J 1 0 ROSE 0C 82 MRC-SP-24 4 0 AA2 80 CC0i

NI

1111.0 WiA 28 2 5

_L .2. 0

1I f 1.5 .4 1122
11W kI

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARS 193-A

Mathemat ic l Sar Cet 44

Universit ofrkWiscosin-adso

Otobe 18

~rcedOctober 12 1982)

LLJ

Approved for public release D I
__ ~Distribution unlimited L CT

~FEB 15 1983

Sponsored by

U. S. Army Research Office
A

P. 0. Box 12211

Research Triangle Park 83 02 014 122
North Carolina 27709

UNIVERSITY OF WISCONSIN-MADISON
NATHEMATICS RESEARCH CENTER

HIGHLIGHTS OF THE HISTORY OF THE LAMBDA-CALCULUS

J. Barkley Rousser

Technical Summary Report #2441
October 1982

BSTRACT

This is an account of not only the lambda-calculus but of its close

relative, the combinatory calculus. It begins with an introductory survey, so

that no previous knowledge is required. It is explained why these are of such

importance for computer software. The account is brought up to the present

time. It includes the shortest and simplest proof of the Church-Rosser

* theorem, which is not yet published and appeared in a limited printing in

August 1982. It includes a model of the combinatory calculus, also not yet

published but available in 1982 in a limited printing. An introduction is

given to some revolutionary new developments of the combinatory calculus for

programing computers.

AMS (NOS) Subject Classifications: 01-A65, 03-03, 03-B40

Key ords: A-calculus, combinatory calculus, foundations of programing

Work Unit Number 6 (Miscellaneous Topics)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

1 frI

....

8GUIIrCAUCZ AID ZXPLANTION

Programing for a computer went through a couple of major changes up to

the invention of FORTAN. Since then, though many competing programing

languages have been developed, the basics of programing have changed

little. In the last half dozen years, some revolutionary new ideas for

programing have appeared, involving the very fundamentals of the lambda-

calculus and the combinatory calculus. By giving an account of these from the

beginning, it is intended to make these revolutionary new ideas more easily

comprehensible.

,P c n For

- S GKA&I
'"I C TAN 00

J u lt if Ic a t i n - - -

Di stribution/

Availability Codes

AValialnd/ 5ri.t I ela

IAL.
The responsibility for the wording and views expressed in this descriptive
sumary lies with NRC, and not with the author of this report.

- - -lima,

HIGHLIGHTS OF THE HISTORY Or THE 1ANSDA-CALULU

J. Barkley Rosser

Kleene-ness is next to G6del-ness

1 . ARALT sOR G NS.

i The l•sambd-calculus originated in order to study functions more carefully. it was

; observed by Frose in 1893 (see van Haijenoort 1967, p. 355) that it suffices to restrictattention to funcions of # single argument. For, uppose you wish a function to apply

t to A and 2 to produce their sun, A + B. Let 0 be a function. of a single argument,

which when aqpplied to A alone produces a new function, again of a single argument, whose

value is A + B when applied to B alone. Note that 0 is not applied simultaneously

to A and 9, but successively to A and then B; application to A alone produces an

intermediary function *(A), which gives A + a when later applied to B alone. That

is, A + - ((A))(B).

This method of reducing the use of a function, O+u. of two arguments to proper use

of a related function, U*, of one argument only, is often referred to as "currying"

because it was brought into prominence by the writings of N. B. Curry. Obviously, the

method can be extended to reduce the use of a function of still more arguments to proper

use of a related function of one argument only.

This is the way computers function. A program in a computer is a function of a single

argument. People who have not considered the matter carefully may think, when they write a

subroutine to add two numbers, that they have produced a program that is a function of two

arguments. But what happens when the program begins to run, to produce the sun A + D?

First A is brought from memory. Suppose that at that instant the computer is completely

halted. What remains in the computer is a program, to be applied to any B that might be

forthcoming, to produce the sum of the given A and the forthcoming B. It is a function

*1982 ACM 0-89 79 1-0 62-61 title as given here, published in August 1982, copied by
permission of the Association for Computing Machinery.

Sponsored by the United States Army~ under Contract No. DAAG29-8 1C-"41.jI

o ci

0- 0! J
1,-0

,I I - , - .I4
. - -F

7,I

of one argument, depending on the given At to be applied to any 3, to produce the atm

A + a. Xt is Frege'. intermediary function *(A).

pp retly Frege did not pursue the idea further. it was rediscovered independently

(see gchnfinkel 1924) together with the astonishing conclusion that a1 functions having

to do with the structure of functions can be built up out of only two basic functions, K

and S. Let us adopt the notation that has been in vogue since then. Instead of writing

the value that one gets by applying the function r to A an F(A), we write (FA).

oassion of the outside parentheses will be usual. When mere than two term occur,

association shall be to the left# thus NP denotes ((N)P), but (NP) denotes

(M(31)). Then the s0m of A and 3 would be written OAS.

lhe functions K and S are such that

(1.1) KD -A

(1.2) SM - AC(C)

For a proof that all functions can be built up of K and 8, one can consult the

original SchUnfinkol paper. Or one can consult the two early papers, Curry 1929 or Curry

1930.

Expressions built up out of K and a by application (that is, enclosing pairs In

parentheses) are called *ccmbinators.0 Use of them, and study of their properties, is

called "ccmbinatory logic.* Sometimes these terms are extended to apply when the

oxpressions are allowed to contain variables, or indeterminates, as well as K and 8.

Suppose we have two functions, F and 0 (built up out of K and 8, of course)

such that by means of (1.1) and (1.2) one can show that

(1.3) FX - GX

for each X, or for an indeterminate X. This means that F and G take the same value

whenever they are applied to each X whatever, and so they ought to be the same

function. That is, one should have

(1.4) F - 0

-2-

in general, one cannot prove (1.4) by mans of (1.1) and (1.2). Curry (see Curry 1930)

contrived additional axiom such that one can prove (1.4) whenever (1.3) holds for each

X. A system like this is said to have the extensional property.

Curry added axioms to enable him to prove additional equalities. Did he go too far,

so that now any two functions can be proved equal to each other? He did not. Indeed, he

was careful to prove a weak form of consistency, in that there are many pairs of functions

that cannot be proved equal to each other. and, especially, K - S cannot be proved.

This gave a workable system, which illaLnated many properties of functions. For

instance, let N be built up from K, 8, and the variable x. One can, using only K

and 8, build up a function F such that one can prove that

Fx - M

by means of (1.1) and (1.2). F turns out to be a mixed up combination of K's and S's.

Just from looking at F, one would not have the least clue that Fx - N should hold.

Because F is constructed in order to give the result Fx - M, it follows that

(1.5) FN - NxmNa ,

in which Xlxs-l] means the result of replacing each occurrence of x in N by N.

Church (see Church 1932) proposed that the F in question be called)o. In this,

N is intentionally part of the name of the function, so that by inspection you can see

what you would get if you apply the function to x. For his construct, Church decreed that

(1.6) ()N - N[x:-N]

this accords exactly with (1.5).

If one starts with the left side of (1.6) and replaces it by the right side, this is

called a B-reduction. One is equally entitled to start with the right side of (1.6) and

replace it by the left side of (1.6); this is called a B-expansion.

Thus, to produce the 0 that we had earlier, Church would use Ax(Uy(x+y)). By

(1.6), one would have

(1.7) (Ax(ky(x-y)))A - ky(A+y)

By (1.6) again, one has

(1.9) (Ay(A+y))B - A+D

-3-

so taking A(ly(x+y)) to be 0, one has

(.9) US, = (Ax(ky(x+y)))AD = A+D

by two S-reductions.

The beauty of this is that at all stages of the process, one can tell by a simple

inspection what the reduced form of OAB is going to be. This is the famous lambda-

calculus of Church (Henceforth, we will write LC for "lambda-calculus.0) It does involve

one with having to be careful about free and bound occurrences of variables. In)V(x+y),

the occurrence of x is free and both occurrences of y are bound.

One has to be careful not to make manipulations which change free occurrences of a

variable into bound ones. Thus, suppose one writes Oy. In this configuration, the

observed occurrence of y is free. A blind adherence to (1.6) would give

ey - AY(y+y)

so that

Sys - z+z

This is certainly not what is intended for 9. The trouble is that the y, which

originally existed as a free occurrence of a variable in ey, has been put into y(y+y)

where Its occurrence is now bound. Actually, when Church enunciated the rule (1.6) he was

careful to impose the restriction that it should not be used if some variable with free

occurrences in N should have those occurrences bound in M[x:=N]. (In addition, one must

now understand K(X:CN] to man the result of replacing each free occurrence of x in

N by V.) In order to cope with this contingency, Church instituted the a-step

(1.10) AyU - Aa(M[y1-Z]I)

MNT To avoid confusion of free and bound variables here, one must put the restrictions

that there are no free occurrences of x in M, and that no occurrence of z in

N(ysIs] that resulted from replacing an occurrence of y in K by z is bound. Now we

have

(1.11) Oy - (Ax(ALz(a+z)))y - Az(y+a) I

the intermediate formula is got from the left one by an a-step. So one has

-4-

(1.12) Oyx - (AZ(y+a))x - y+x

which is Just what 0 is supposed to do.

If we can get from 4 to N by a succession of steps, possibly null, each of which

is either an a-step or a 0-re4uction or a 0-expansion, we say that M is convertible to

V; we write "1 cony N". If M conv N by a succession of steps, none of which is

a B-expansion, we say that M is reducible to N; we write "K red N".

John NcCarthy worked several ideas of the LC into LISP. He clearly recognized

procedures as functions of one argument. In LC, such functions can be applied to each

other and give such functions when applied. In LISP, it is possible to apply one procedure

to another, and on occasion get another procedure.

AS we said earlier, the X and S, and things built exclusively of them, are called

combinators. Can we comingle combinators and lambda-expressions? Yes indeed, with no

trouble whatever and indeed, variables, or indeterminates, nay be freely included.

Church had decided that one should form ja only in case there are free occurrences

of x in N. Thus, Church could not got a lambda-expression to correspond to K. It

could be done if one relaxes the requirement that there be at least one free occurrence

of x in M to form A30. So the LC, as originally set up by Church, seems a trifle

weaker than the combinatory calculi of Sch~nfinkel and Curry. For present day

applications, either would serve perfectly well (this takes some proving) and the

difference is just something to niggle over, quite insignificant. originally, this was not

known, and Rosser (see Rosser 1935) invented a couple of other combinators, in place of

K and S, with which he set up an exact equivalent of the LC. Like Curry, his system had

the extensional property and a weak form of consistency. Hence the LC has these attributes

also.

The LC (and hence, the combinatory calculi) has a fixed point theorem.

Given a function, F, one can find a * such that

(1.13) r, - .

Proof. Take

*= *, where *- b(xx)

* -5-

There is an obvious functional relationship between 0 and r. namely

(1.14) 0 - Yv

where

(1.15) y - A ((xf(xx))(Xf(xx)))

On pp. 177-179 of Curry and reys 1958, Y is called the paradoxical combinator. The

property

(1.16) r(I') -. Yr

for each r is noted, which the authors thought to be paradoxical. The property (1.16)

makes Y useful in some of the modern treatments of combinators. See p. 37 of Turner 1979

(first citation).

2. A DACL.

The LC and the combinatory calculi were fairly promptly embedded in systems which had

same of the earlier attributes of logical systems. aee Church 1932 and Curry 1934. The

results turned out to be inconsistent. This was first proved in Klene and Rosser 1935 by

a variation of the Richard paradox. Later, Curry got a simpler proof, related to the

Russell paradox. See Curry 1942. This has the following simple form. Suppose we have the

two familiar logical principless

(2.1) P D P

(2.2) (P : (P : Q)) (P D Q)

together with modus ponens (if P and P D Q. then Q). we undertake to prove an

arbitrary proposition A. We construct a 0 such that

(2.3) D- ODA I

to do this, we take F - A(x :) A) in the fixed point theorem. By (2.1), we get

D 0

Applying (2.3) to the second # gives

*D (0D A).

By (2.2) and modus ponens, we get

-6-O"

By (2.3) reversed, we get

By modus ponens and the last two formulas, we get

A .

This is usually referred to as the Curry Paradox, by analogy with the Russell Paradox.

Fitch proposed to avoid this by weakening the LC (or equivalent combinatory calculus)

so that the fixed point theorem fails. He also weakened modus ponena a bit. See Fitch

1936 and Fitch 1952. He has proved consistency for his system, but it is much too weak to

be considered as a foundation for mathematics. He and his students have continued

intermittently to the present to come out with improvements, but it still remains extremely

weak.

Ackermann proposed keeping the full strength LC, but badly crippling implication. See

Ackermann 1950 and Ackermann 1953. He proved the consistency of the system, but it was

hopelessly weak as a foundation for mathematics, and I know of no recent interest in it.

Curry kept the full strength combinatory calculus, but added a fragentary theory of

types and a weakened version of implication. He introduces a notion of functionality,

F, such that if Z is a function and X and Y are types, then FXYZ is to denote that

if U is of type X, then ZU is of type Y. See Curry 1934 and Curry 1936. It turned

out that the "natural" axioms for functionality lead to a contradiction, as shown in Curry

1955. However, by imposing suitable restrictions, all is well. See Curry 1956. Since

then, Curry and his students have made extensive developments. Two major works, Curry and

Fys 1958 and Curry, Hindley, and Seldin 1972, are landmarks. Sven so, adoption of the

system as a foundation for mathematics has not progressed at all, though the system has

some capability in that direction; see Cogan 1955.

-7-

3. WMRlE DO WE GO FRON HRS?

Am we said, Fitch and Curry are continuing to develop their systems. However, there

is no likelihood that either will be adopted as a foundation for mathematics. originally,

it was expected that the WC or a combinatory calculus should be a part of such a system.

Surprisingly enough, the LC (or a combinatory calculus) has turned out to be of importance

in its own right. So one has to ask the questions that are asked about any logical system.

1. What about consistency?

2. What about completeness?

3. What about models?

4. What about the connection with computers?

At the time when the LC and the combinatory calculi were being developed, one did not

ask the fourth question. Computers had not yet been inventedl

4. WHAT ABOUT COVSISTNCY?

We observed earlier that the LC and the combinatory calculi have a weak consistency,

in that one cannot prove that both of any pair of functions are equal to each other.

Fairly early on (see Church and Rosaer '9361 reproduced in Church 1941) a considerably

stronger form of consistency was proved for the LC, embodied in the Chvrch-Rosser Theorem

(referred to hereafter as C-R-T).

Suppose Xo red Xa and Xo red X2 . Then there is an X3 such that both X, red X3 and X2

red X3.

A lambda-formula is said to be in normal form if it has no part on which one can

perform a -reduction. A lambda-formula X is said to have a normal form Y if Y is in

normal form and X conv Y. We can prove the following theorem.

If X has a normal form Y, then X red Y and Y is unique, except possibly for a

few cosmetic a-steps.

One prove, the first part of this by induction on the number of operations in

X cony Y. The idea is as follows. Suppose one goes from X to W1 by

a -expansion, next from V 1 to W2 by a -reduction, and finally from W2 to Y by a

--

second 0-reduction. Then W1 red X and W1 red Y. So, by C-R-T, there is a W such

that X red W and Y red W. But Y is in normal form, so that in the reduction from Y

to W there cannot be any O-reduct!ons; only a-steps. So, except for cosmetic uses

of a-steps, Y is W, and we had X red W. For uniqueness, suppose Z is another normal

form of X. Then it is also a normal form of Y. So Y red Z. But Y is in normal

form. So the reduction from Y to Z can consist only of a-steps.

The lambda-formulas of interest mostly have normal forms. These normal forms

constitute a foundation, on which is erected an elaborate superstructure. However, each

normal form has its own individual superstructure, not overlapping the superstructures of

the other normal forms.

Because formulas of the LC can be identified with formulas of a combinatory calculus

and vice versa, there are superstructures in the combinatory calculus corresponding to

those of the C.

In (1.1) and (1.2), one can consider going from left to right as a reduction. So one

can look for parallels to C-R-T, one can define normal forms, etc. There was much

investigation of these questions.

The original proof of C-R-T was fairly long, and very complicated. In Newman 1942,

the point was made that the proof was basically topological. Newman generalized the

universe of discourse, and defined a relation with properties similar to a 0-reduction. He

proved a result similar to C-R-T by topological arguments. Curry, in Curry 1952,

generalized the Newman result, with the intention that it would be relevant to similar

considerations in the combinatory calculi. Unfortunately, it turned out that neither the

Newman result or the Curry generalization entailed C-R-T in the intended systems because

the systems did not satisfy the hypotheses of the key theorems. This was discovered by

David Z. Schroer, whose counterexample is recorded in Rosser 1956. In Schroer 1965 is

derived still further generalizations of the Newman and Curry results, which indeed do

entail C-R-T in assorted systems. As Schroer 1965 is 627 typed pages, this hardly

contributes to the cause of shorter and simpler proofs of C-R-T.

-9-

Chapter 4 of Curry and Veys 1958 in devoted to a proof of C-R-T for the 19, and to

related matters. It is not r#eemended for light reading. In Hindley 1969 and Hindley 1974

are discussions of proofs of C-R-T for the LC and systems closely related thereto.

These various proofs all stamed generally from the Newman approach, with an emphasis

on the topological structure. However, lambda-formulas and combinators have a marked,

though specialized, tree structure. Nitschke 1973 used the tree properties a bit in

deriving a proof of C-R-T. Rosen, in Rosen 1973, really went overboard. He worked with

general trees, and relationshipe between them. As lots of things have a tree structure,

his results have applications beyond proving C-R-T. He applies his results to the extended

M Carthy calculus for recursive definition (see McCarthy 1960), and verifies a conjecture

in Morris 1968. He also applies his results to tree transducers in syntax-directed

compiling. With all that, the proof of C-R-T did not come easy. He had to prove C-R-T's

for several related systems, and then derive the C-R-T for the LC by some trickery.

Meanwhile, a genuine simplification for the proof of C-R-T had come in sight.

See Martin-Laf 1972. It in agreed that Martin-Ldf got some of his ideas from lectures by

V. Wit. An exposition of the proof of C-R-T according to Tait and artin-lAf appears as

Appendix 1 in ifindley, Lercher, and Seldin 1972. A shorter exposition appears on pp. 59-62

of Barondregt 1981. We will give what seems to us a still shorter and more perspicuous

proof of C-R-T.

What seems to be the min difficulty of the proof? Let us look at the minimal case.

Suppose l o has two parts, (AWI)VI and (2xW2)V2. Let Xo red Xi by performing

a O-reduction on (i)v i , for i - 1,2. If (Axw)tfV1 and (AxW2lV 2 reside in totally

disjoint parts of Xo, there is no trouble. To get X3 we perform a B-reduction on the

()WW2)V2 that still resides in X, and on the (xW 1)V1 that still resides in X2.

Hote that the reductions from X1 to X3 and from 12 to X3 each use exactly

one P-reduction.

Sut suppose that Ox2) 2 is part of V 1 . X2 will contain (.xW1)V3 , where V3

is the result of a P-reduction of (xW 2)V2 inside Vi . As a candidate for X31 we

perform a P-reduction on the (W 1)V3 of X2. How about getting from X1 to 13?

-10-

.i

Where X1 had (AxW)V1 , Xl will have W1[xt-V 1) . If there had boon only one fro

occurrence of x in W,, then W1 jxz Vl] will contain a corresponding Vl; we change

this to V3 by a B-reduction on (2W2)V2'

contain several free occurrences of x. Then V [xs-V1] will contain several V'.*s We

can go through, and change them one after another to V3's. which will result in X3 . But

there is no way we can get from X, to 13 by a mingle -reductLon.

In the language of Barendregt 1981, p. 54, -roduction does noA have the diamond

property.

The difficulty is that it may take several 0-reductions to got from XI to X3 . This

should have suggested working with a string of B-reductions, instead of only one. Why it

took more than thirty years for this to occur to anyone is a mystery.

If we call a 0-reduction or a-step a step, then a string of them will be a walk. But

we cannot allow just any old string. What we are aiming for is that if 10 walk X1

and Xo walk X20 then there i an X3 such that X, walk X3 and X2 walk X3. If

we put the right restrictions on the steps allowed in a walk, we can do this.

We frame our restrictions for a walk as follows.

1. A walk may contain no steps at all.

2. it may contain a-steps at will.

3. If a number of parts (XW i)V fail to overlap at all, the corresponding

B-reductions may be done in any order.

4. Let (AxW)V be reduced to Wtxs-V] in a B-reduction of the walk. Inside that

part. W(x2:V], no subsequent B-reductLons may be performed in the walk, and indeed

no B-reduction of all of V(xs-VI, in case it has the requisite structure (which it

could). However, a-steps may be performed inside W[x:-V1.

The relation - on p. 60 of Barendregt 1981 is likely closely related to our

notion of a walk, but it is not exactly the same. For the key lemse, Barendreqt uses

something like induction on the number of steps from X0 to Xl whereas we use induction

on the number of symbols in Xo . This makes quite a difference.

We need a lems, which is about as follows.

-11-

S.

Suppose X walk Y. Then X[x:-p] walk Ytx:-P] by a completely parallel series

of O-reductions.

To see this, note that a-steps do nothing to the free occurrences of x.

A S-reduction can rearrange the free occurrences of x. It can even replicate them, as

would happen if the 0-reduction were from (-yS)T to Sly:-T] if there are several free

occurrences of y in S, they would each be replaced by T, and any free occurrences

of x in T would be thereby replicated.

So, if occurrences of P are put for the free occurrences of x in X, a completely

parallel series of O-reductions is possible, end all it will do is rearrange or replicate

the P's just as the walk from X to Y did for the free occurrences of x. At the end,

we Just have Y[x:-P] as the result. The fact that the restrictions for a walk were

satisfied in going from X to Y assures us that they will be satisfied in going from

X[x:-p] to Y[x:sP].

Actually, the lema is not quite true, because of the possibility of confusion of free

and bound variables. Already, before you try the first step from X(x:-P] to Y[x:=P],

you could be in trouble if some of the free variables in P became bound when P was put

for x in X. However, a very close relative of the loema, sufficient for our purposes,

is true.

Lemma. Suppose X walk Y. In X, change all bound variables by a-steps to a set of

distinct variables that have no occurrences in X or P. This gives X1, for which there

is a Y1 such that x
1
walk YI by essentially the same S-reductions as were used for

X walk Y. Then X
1
[x:=P] walk Y [x:-P] by a completely parallel series of S-reductions.

we first note that there will be no need for a-steps in either the walk from X to

yI or from X
1

x:-PI to y
1
[x:-P]. All possibility of confusion of bound variables has

been sidestepped in changing from X to X
1
, and we can now use the argument given

originally.

-12-

6

Note that this lema is very nearly the same as proposition 2.1.17(1) on p. 28 of

Barendregt 1981. It is also closely related to proposition 3.1.16 on p. SS. In

Barendregtss terminology, our low,, says that a walk is substitutive.

Diamond Property. if Xo walk X, and X0 walk X2. then there is an X3 such that

X, walk X3 and X2 walk X3.

In other words, there is an X3 which is the fourth vertex of the diamond, with a

walk along each edge.

Proof by induction on the number of symbols in X0.

Case 1. If Xo has a single symbol, it is immediate.

Case 2. Let Xo be)mIa. Then X, must be kI for 1=1,2. Clearly we have

walk it. for i - 1,2. So there is a H3 such that Mi walk R3 for i-1,2. Take

X3 to be Am 3.

Case 3. Let Xo be oNo .

Subcase 1. Xi is MiN with NO walk Mi and NO walk Mi, all for 1-1,2. Then

there are K3 and 33 with Mi walk 113 and Nl walk W3 , both for 1-1,2. Take

X3 - M3 33 .

Subcase 2. No is yWo . Xy is wl[y:=] , and X2 By restriction

4, the last J-reduction in X. walk Xl had to be from (),YWl)N. So we have Wo walk Wi

and NO walk Mi. both for i1,2. Then there are W3 and N3 such that Wi walk W3 and

Mi walk N3 both for -1l.2. Then we have X2 walk (OVW3)N3, and hence we take X3 to

be W3(ys-N3]. There are various Nl's in W 1[yz-N 1], but they are non-overlapping. So

we operate on each in turn, and have X, walk Wly:-33]. By our lea, Wl(y:-N 3] walk

W3 (ysN 3]. the latter being X31 except for some u-steps. Now the steps we took in going

from Wl1y:-N3] were all on N3's that had been put for y's in Wl" So none of them

could violate restriction 4 as we go on down to W3 [yt-3 3] from Wl[y'-N 3]• So we can put

these two walks together to conclude X, walk X3.

Subcase 3. Like subcase 2, except with X, and X2 interchanged. Make suitable

interchanges in the proof of subcase 2.

-13-

16

Subo&" 4. % is y7WI , and X. is wi[y$-Nil for 1-1,2. By restriction 4# the

last B-reduction in X0walk Xhad to be from (AyWi)"i' both for L-1,2. so we have

Nwalk Wand Nowalk Vie both for 1-1,2. So there are 3 3 and N3 such that

Miwalk 33 and Ni walk U3 both for 1-1,2. There are various Ni's in UijyawViI. but

they are non-overlapping. So we operate on each in turn, and have X, walk W1 ys.U31.

both for i-1,2. By our lesae Wily:-N3J walk 3 3 Eyg-3 3] both for 1-1,2. except for

soe a-steps. X3 is V3Cy:-31 To get from i down to X31 we have to combine two

walks, both for i-1,2, but the argument for this goes as in subcase 2.

Now we prove something that looks like C-R-T.

if 10 goes to xi by a succession of walks, both for 1-1,2. then there is an

I) such that Ii goes to X3 by a succession of walks, both for 1-1,2.

The proof is so easy that, if we carry out the details for a special case, the whole

thing becomes obvious. So, let X.walk W, walk W2 walk X, and

S10 walk 33 walk X2. Dy the Diamond Property, we can fill in Wits to be corners

* in tigure 1.

X0

Ul 3

~2 34 1

~6 xs

Figure 1

As each B5-reduction or a-step taken alone is a walk, C-R-T follows by the previous

result.

Although the proof in Newman 1942 failed to prove the C-R-T for the Le, it does prove

a C-R-T for a fairly general universe of discourse. Some cases of this have been found to

-14-

be useful, though they have not much in commn with the IAC. See book 1982# and several of

the other authors cited in bibliographic references in Dock 1932.

S. * Ma Aloc COMPIZCU3SS?

At first sight, it appears that the LC is so weak that it is absurd even to raise the

question. However, as indicated in Church 1932 and amplifiLed In Kleene 193S , the positive

integers can be defined in the WC. If n is a positive integer, we lot

where there are a f's. denote the Integer n. This makes one form of recursive

definition easy. If r(n) is to be defined by

(5.1) FM1 - Gh

(5.2) V(n41l) - G(Vn)

then we can take P to be

(S.3) nnA

With this definition,

P1 red OR

P2 red G(GR)

P3 red G(G(GA))

etc.

However, there is no zero in this system. one would prefer the recursive definition

to be given by

(S.4))-A

(5.5) (l)-G(Vn)

In Kiene 1936, Kleens worked out a way to do this. This opened the door to still more

general recursive definitions. gare and more definitions of functions from integers to

integers were discovered. Som never published investigations by Rosser disclosed so many

that in about 1934 Church was led to conjecture that every effectively calculable function

from positive integers to positive integers is definable in the WC. It was known from

Church and Rosser 1936 that every function from positive Integers to positive Integers that

is definable in the L is effectively calculable. So Church enunciated what is now known

as "church's Thesis."

Church's Thesis. Zffectively calculable functions from positive integers to positive

integers are just those definable in the LC.

As "effectively calculable" is an intuitive notion, Church's Thesis is not susceptible

of proof. However, it states a strong, and quite unexpected, version of completeness.

In about this era, GMdel and Kleene were trying to get a definition for "general

recursive function." gleene gives a definition in Kleene 1936. He attributes it

to Gadel. Gddel thought that general recursiveness should be taken as the criterion of

effectively calculable. However, in Xleene 1936 it is shown that general recursiveness is

the same as being definable in the LC. This lent strong support to Church's Thesis.

Independently, Turing had been developing the abstract idea of a computer, the

so-called "Turing machine." See Turing 1936. Turing thought that "effectively calculable"

should be taken to be the same as calculable on a Turing machine. But in Turing 1937, he

proved that that is the same as being definable in the IC. This result explains why the

lambda-calculus and the combinatory calculi can (and do) play such an important role in the

theory of computer programing, and such matters.

Independently, in Post 1936, Post had developed ideas very similar to those of

Turing. Turing published first, by a very few months. Later, in Post 1943, still another

definition of "effectively calculable" was proposed, which turned out to be equivalent to

those already given. Still later, in Narkov 1951, Markov gave yet another definition,

which was also proved to be equivalent. A translation of this appears as Markov 1961. In

Smullyan 1961, using his "elementary formal systems," still another definition is given,

which is also equivalent.

With the development of actual computers, which are finite approximations for a

universal Turing machine, interest in all these matters has been much intensified. In

Eleene and Vesley 1965, on p. 3, the authors list 150 contributions to the subject by

October 15, 1963. By now there are far more.

-16-

* '-K

Eleene's early developments in recursion theory were of much importance for

computing. However, though he still uses many notations from the LC, he has diverged far

from it into an area that is now essentially of no use in computing, though active and of

interest to many people.

There have been some objections to Church's Thesis. In Moschovakis 1968 is given a

simultaneous review of four papers, by .3an Porte, LissId Kalmar, Rdzsa Pdter, and Elliott

Mendelson. The first three papers attempt in various ways to discredit Church's Thesis.

The paper by Nendelson discusses the first three papers, and undertakes to show that their

criticisms are illfounded. In the opinion of the reviewer, he succeeds quite adequately.

I know of no recent attacks on Church's Thesis, and it sema to be generally accepted as an

important, if unorthodox, version of completeness for the LC.

6. IMWA AsOG? MOD3LS?

There is a classic theorem that says that, if a logic is consistent, it will have a

model; indeed a denumerable one. However, the LC is so different in structure from the

usual logic* that the theorem does not apply to it.

Why does one wish a model? If one has a framework with a lot of structure, and the

logic is isomorphic to some part of the framework, then the structure in the framework can

contribute to your understanding of the logic. One can always manufacture a very

superficial model by taking equivalence classes of objects in the logic. The only

structure this has is what is forced on it by the logic itself. go no additional

understanding can come from studying the structure of the Model. Such a model does little

good.

For a very long time, this was the only kind of model that was found for the Ic.

Finally, with encouragment from Strachey, Dana Scott hit on a way of making some really

useful models. They could be constructed either in the category of topological spaces or

in the category of lattices. An exposition, *Outline of a mathematical theory of

computation,* appears in pp. 169-176 of the Proc. Fourth Annual Princeton Conf. on

Information Sciences and Systems, 1970. In case this is inaccessible, another exposition

-17-

Ill I I' I11i] i I !

appears as the final article in Zngeler 1971. in Barendregt 1981 is given a model similar

to the Scott one, but in a still more general framework, namely the category of complete

partial orders. In one sense, this is good since one can derive still more properties of

the LC in this more general category. However, suppose one would like just to see a model

without having to learn all the algebra involved in topological spaces, lattices, or

complete partial orders. Some people have been working in that direction, to got a model

without all the algebraic baggage. This is mostly available only in unpublished material,

such as Plotkin 1972, angeler 1979, and Meyer 19821 the latter gives a fairly complete and

coherent account. According to Meyer, the model originated with Plotkin, was improved by

Ingeler, and further improved by Meyer himself. Our account is taken from the Meyer paper.

Start with a nonempty set, Ai the unit class consisting of the ordered

pair <#,#> will do, where # is the null class. Enlarge A to the least set 8

containing A and all ordered pairs <B,b), where B is a finite subset of B and b

is in B.

The model consists of all subsets of B. For two members, C and D, of the model,

define

(6.1) (CD) - jbeSI<$,b>eC and OC DI

To show that this contains a model of the combinatory calculus, we identify two

elements K and S:

(6.2) K . {<*,<6,b>>jbca and a,8 finite subsets of 8•

(6.3) S = {<a,<B,<y,b>>>jbzay(By) and aO,y finite subsets of B1

One verifies fairly easily that

(6.4) KCD - C

(6.5) SCDS - CZ(D3)

for all elements of the model. A close relative of the extensional property holds: see

Meyer 1982.

Since the LC in so closely related to the combinatory calculi, it is not surprising

that something very similar can be put together as a model for the LC. In Meyer 1982 there

are full details.

-18-

" - . bssk " : - : " : : 9 - - . ' " '" " ' . ..

hF

7 o HEAT AMOMf TME CORCTZOU WITS CoNiPTERS)

This proceeds in two directions- One can use computers to manipulate combinators or

formulas of the LC, or one can use properties of combinators and the LC to help in

programming or to develop ideas of use for computers.

Looking to the first, the obvious approach would be to represent the combinators, or

formulas of the LC, as lists or arrays in the computer memory. In fact, these formulas are

tree structures. and might better be represented so on the computer. Rnowing the location

of only the root of the tree than suffices to reconstruct the entire tree. So the trees

(entire formulas) can be identified by single memory locations, instead of by elaborate

diagrams or linearizations thereof.

The idea is very simple. Suppose A and 3 are combinators, and we have put their

roots at memory locations a and b. Then we represent C - (AS) by locating its root at

memory location c in c we put the ordered pair of numbers a and b. The person who

wishes to know the structure of C is told to look at location a. There he finds

<a,b>, which tells him that C has the form (AD). and that to know the form of A he

should look in location a, and similarly for S.

Besides the convenience in referring to a formula, this allows economies of memory

which are not possible when a formula is represented by a list. For an extreme example,

suppose 3 - (MA)(AA)), where A requires 1000 memory locations for its

representation. To represent 9 as a list would require four repetitions of the listing

of A, together with attendant parentheses; a total of 4006 locations. With the tree

representation, let A have its root at a; we may still suppose that the entire

representation of A fills 1000 locations. At same convenient memory location, d. ve

put 4a,a>, which denotes D,- (AW). Then at another empty memory location, b, we put

<d,&, which denotes (DO). Sut (Do) is ((AA)(AA)) m B. Thus, with A represented in

1000 memory locations, we require only 1002 locations to represent ((AA)(AA)).

Aother advantage of the tree representation is that it lends itself to what is called

-lazy evaluation., Suppose a part N occurs several times in a formula X. If X is

represented as a list, the several occurrences of N are each written out in full. Unless

-19-

AL. -

extraordinary measures are taken, each of the occurrences of I will be evaluated

separately, and independently, in the course of evaluating X. However, with a tree

structure, K will occur only once, but with various pointers "pointing" to it. Hence, it

will be evaluated once only.

These, and many related matters, are taken up in Petznick 1970. Consider a typical

program on a computer, say for computing an approximation to the square root (two integers,

a mantissa and an exponent). If one inputs an approximation for a real number (a mantissa

and an exponent) the program will generate and output an approximation for the square root.

So the program defines a function. Naturally, it is a computable function. So (by one of

the equivalences supporting Church's Thesis) this function mi st be expressible by means of

a combinatory formula. If suitable hardware, or software simulations thereof, is

available, the calculation can be done solely by combinatory manipulations.

Something of the sort had been proposed for lambda-formulas by Landin. For this

purpose, he defined and used what he calls SECD machines. See Landin 1965 or "A formal

description of ALGOL 60," pp. 266-294 in Steel 1966. However, this involved him in a very

difficult problem of handling the complicated substitutions properly. If he had used

combinatory formulas instead, this problem would be much simplified. Also, Landin tried to

superpose the laIbda-formulas on top of the usual computer software. This produced a

greatly complicated assignment problem. If one would dispense with the usual computer

software, and work only with combinatory formulas stored in the memory (preferably as

trees) the assignment problem would simply disappear.

Petznick's thesis, Petanick 1970, showed that it is possible to design a computer to

work exclusively with combinatory formulas, stored as trees. There is no assignent

problem, and application takes the place of substitution. As application is the basis of

the tree structure, it is handled automatically. The hardware one would have to build to

handle this would be quite simple. or it can be handled with present hardware by a

suitable software simulation.

Petsnick's thesis managed to evade everybody's attention, and nothing mort was done in

that area for a while. But after some years, work similar to Petanick's, and extending it,

-20-

Q6.

Ib

began to appear, and has quickly blossomed. It now engages the attention of a considerable

number of people, all of whom seem to be quite unaware of Petsnick's work.

There is quite a ferment of activity just now. and several papers were presented at

the 1902 ACH Symposium on LISP and Functional Programming at Pittsburgh; a set of

Proceedings is available under ACH order number 552820. it would surpass my powers as a

soothsayer to determine what will emerge am the key ideasm perhaps some have not yet

emerged.

I will sketch a couple of trains of development, to give the reader some sort of idea

what is happening. In so doing, I may fail to note something that will be of major

importance, and so fail to give credit due to those who are working on it.

In Henderson and Norris 1976 appeared an idea for lazy evaluation. The two papers,

both cited as Turner 1979, carried this forward, and also showed how to condense

combinatory formulas very much. thereby alleviating what had been a problem for Petznick.

Nore on that last point is given in Hughes (to appear). There are now programs for

manipulating combinatorm directly. One is given in CRS/1. Another is SXNI, which was

announced in 1980, and is now being improved by a group at Cambridge University. Dackus

1970 does not soem to be in the main stream of this activity, but it has some quite novel

combinatory functions, and something interesting may evolve out of it.

It meems to be now established that operating directly on computers in combinatory

format im not only feasible, but has ame advantages. even more useful results may be just

around the corner. Or they may have already been announced without my appreciating their

worth.

-21-

BZILIOGRAPHIC INFORMATION

Most references below are cited by author and date alone, am in "van Heijenoort

1967." Some are without author, am "CR8/i.* Some references below are to unpublished

themes. Copies of some of these can be obtained from

University Microfilms International

A Xerox Publishing company

300 N. zeeb Road

Ann Arbor, MI 48106

Ackermann, W., "tfiderapruchafreier Aufbau der Logik I. Typenfreies System ohne Tertium non

datur," Jour. Symb. Logic, vol. 15 (1950), pp. 33-57.

Ackeruann, W., "Viderspruchfreier Aufbau amner typenfreier Logik. I," Math. Zeit., vol. 55

(1952), pp. 364-3841 *11," Math. Zeit., vol. 57 (1953), pp. 155-166.

Backus# John, "Can programming be liberated from the von Neumann style? A functionial style

and its algebra of programs,' Comm. Assoc. Comp. Mach., vol. 21 (19761, pp. 6t3-641. r
Darendregt, H.P., "The lambda Calculus," North-Holland Publ. Co., 1981.

Book, Ronald V., "Confluent and other types of Thus systems," Jour. ASSOC. Comp. Mach.,

vol. 29 (1982), pp. 171-182.

Church, Alonzo, 'A set of postulates for the foundation of logic," Annals of Math., second

series, vol. 33 (1932), pp. 346-366.

Church, Alonzo, "The calculi of lambda-conversion," Annals of Math. Studies 6, Princeton

Univ. Press, 1941; 2nd ed., 1951.

Church, Alonzo, and Rosmer, J. B., "Some properties of conversion," Trans. Amer. math.

Soc., vol. 39 (1936), pp. 472-482.

Cogan, Edward J., "A formalization of the theory of sets from the point of view of

combinatory logic," Zeit. Math. Logik Grundlagen Math., vol. 1 (1955), pp. 198-240.

CR8/I specification, available from Beale Electronic Systems Ltd., Wraysbury, UK.

-22-

Curry, H. B., "An analysis of logical substitution," Amer. Jour. math., vol. 51 (1929),

pp. 363-384.

Curry, H. B., "Grundlagen der kombinatorischen Logik," Amer. Jour. math., vol. 52 (1930),

pp. 509-536.

Curry,, H. B., "Some properties of equality and implication in combinatory logic,"

Annals of Math., second series, vol. 35 (1934), pp. 849-860.

Curry, H. a., -Functiona-lity in combinatory logic," Proc. Hat. Acad. Sci. U.S.A.,

vol. 20 (1934), pp. 584-590.

Curry, H. a., "First properties of functionality in combinatory logic," *dhoku Math.

Jour., vol. 41 (1936). pp. 371-401.

Curry, H. B., "The inconsistency of certain formal logics," Jour. Symb. Logic, vol. 7

(1942), pp. 115-117.

Curry, H. B., "A new proof of the Church-Rosser theorem," Nederl. Akad. Wetensch.

Ser. A, vol. 55 (1952), (Cndag. Math., vol. 14), pp. f6-23.

Curry, H. B., "The inconsistency of the full theory of combinatory functionality

(Abstract)," Jour. Symb. Logic, vol. 20 (1955), p. 91.

Curry, H. B., "Consistency of the theory of functionality (Abstract)," Jour. Symb. Logic,

vol. 21 (1956), p. 110.

Curry, Haskell B., and Feys, Robert, "Combinatory logic,* Worth-Holland Publ. Co., 1958.

Curry, Haskell B., Hindley, J. Roger, and Seldin, Jonathan P., OCambinatory logic,

vol. tIl, North-Holland Publ. Co., 1972.

ngeler, S., editor, wSymposium on semantics of algorithmic languages," Lecture Notes in

Mathematics, no. 188, Springer-Verlag, 1971.

Engeler, E., "Algebras and combinator.," erichte des Inst. fur Informatik, Hr. 32,

311 Zurich, 12pp., 1979.

Fitch, F. B., "A system of formal logic without an analogue to the Curry V operator,"

Jour. Symb. Logic, vol. 1 (1936), pp. 92-100.

Pitch, F. B., "Symbolic logic, an introduction." The Ronald Press Co., New York, 1952.

-23-

Henderson, P., and Morris, 3. H., "A lazy evaluator," Proc. 3rd annual ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages, pp. 95-103, Atlanta, 1976.

Hindley, R., "An abstract form of the Church-Rosser Theorem. I," Jour. of Symbolic Logic,

vol. 14 (1969), pp. 545-560.

Hindley, R., "An abstract Church-Rosser Theorem. II: Applications," Jour. of Symbolic

Logic, vol. 19 (1974), pp. 1-21.

Hindley, J.R., Lercher, B., and Seldin, J.P., "Introduction to combinatory logic," London

Mathematical Society Lecture Note Series 7, Cambridge Univ. Press, 1972.

Hughes, R. J. K., "Graph-reduction with supercombinators," Oxford University Programaing

Research Group technical monograph PRG-28 (to appear).

Rleene, S. C., "A theory of positive integers in formal logic," Amer. Jour. Math., vol. 57

(1935), pp. 153-173, pp. 219-244.

Xleene, S. C., "X-definability and recursiveness," Duke Math. Jour., vol. 2 (1936),

pp. 340-353.

Eleene, S. C., and Rosser, J. B., "The inconsistency of certain formal logics," Annals

of Math., second series, vol. 36 t1935), pp. 630-636.

Kleene, S.C., and Vesley, R.3., "The foundations of intuitionistic mathematics,"

North-Holland Publ. Co., 1965.

Landin, P.J., "A correspondence between ALGOL 60 and Church's lamh-.*totatio;l$. .m.

Assoc. Computing Machinery, vol. 8 (1965), Part I, pp. 89-101, Part 11, Pp. 158-165.

Markov, A. A., "Teoriya algorifmov (Theory of algorithms)," Trudy Mat. Inst. Steklov,

vol. 38 (1951, pp. 176-189.

Markov, A. A., "Theory of algorithms," No. OTS 60-51085, U.S. Department of Commerce,

Office of Technical Services 1961.

Martin-LBf, P., 'An intuitionistic theory of types," manuscript, University of Stockholm,

1972.

McCarthy, J., "Recursive functions of symbolic expressions and their computation by

machine," CoOK. Assoc. Computing machinery, vol. 3 (1960), pp. 184-195.

-24-

Meyer, Albert R., Vhmt is a model of the lambda Calculus?" 1982. To appear in

Information and Control, vol. 52.

Ritschke. G., "gin algebratecher Rewels far dan Church-Rosser Theorem,"

ArchLv. f~r mathematische Logik, vol. 15 (1973), pp. 146-157.

Morris, J.H., Jr., "Lambda-calculus models of piogramming languages," KAC-TR-57, M.I.T.

Project MAC, Cambridge, Mass. 1968.

Moschovakis, Y. N., A review, Jour. Symb. Logic, vol. 33 (1968), pp. 471-472.

Newm, M. H. A., "On theories with a combinatorial definition of "equivalence, "

Annals of Math., second edition, vol. 43 (1942), pp. 223-243

Petznick, George V., "Combinatory progrem ing," Ph.D. thesis, Univ. of Wisconsin, Madison,

Vin., 1970. Publication 70-24812 of University Microfilms Znt.

Plotkin, G.D., "A set-theoretical definition of application," Memorandum MIP-R-95, School

of Artificial Intelligence, Univ. of Edinburgh, 32 pp., 1972.

Post, Mail L., "Finite combinatory processes. Formulation I," Jour. Symbolic Logic,

vol. 1 (1936), pp. 103-105.

Post, Z. L., "Formal reductions of the general combinatorial decision problem," Amer.

Jour. Math., vol. 65 (1943), pp. 197-215.

Rosen, S.K., "Tree manipulation systems and Church-Rosser theorems," Jour. Assoc. Computing

Machinery, vol. 20 (1973), pp. 160-187.

Rosser, J. B., "A mathematical Logic without.variablesm" Annals of Math., second series,

vol. 36 (1935), pp. 127-150, and Duke Math. jour., vol. 1 (1935), pp. 328-355.

Rosser, J. Barkley, Review of Curry, 'A new proof of the Church-Rosser theorem," Jour. of

Symbolic Logic, vol. 21 (1956), p. 377.

Sch8nfinkel, Moses, "&er die Bausteine der mathematischen Logik," Math. Ann., vol. 92

(1924), pp. 305-316.

Schroer, David I., "The Church-Rosser theorem," Ph.D. thesis, Cornell Univ., June 1965.

Publication 66-41 of University Microfilms, Int.

Smullyan, R. M., "Theory of formal systems," Annals of Math. Studies 47. Princeton Univ.

Press, 1961.

-25-

Steel, J.., Jr., editor, aFormal language description languages for computer programing,"

Proc. IFIP Working Conference on Formal Language Description languages, North-Holland

Publishing Co., 1966.

Turing, &. N., "On computable numbers, with an application to the Entscheidungsproblem,"

Proc. London Math. Soc., second series, vol. 42 (1936), pp. 230-265. "A correction,"

vol. 43 (1937), pp. 544-546.

Turing, A.N., *Computability and ?-definability," Jour. of Symbolic Logic, vol. 2 (1937),

pp. 153-163.

Turner, 0. A., "A new implementation technique for applicative languages," Software-

Practice and axperience, vol. 9 (1979), pp. 31-49.

Turner, D. A., "Another algorithm for bracket abstraction," Jour. Symb. Logic,

vol. 44 (1979), pp. 267-270.

van Reijenoort, Jean, "From Frege to GWdel," Harvard Univ. Press, Cambridge, 1967.

I

-26-

1-4

SECURITY CLASSIFICATION OPP THIS PAGE (Ubm0 DO*. 111000.

READ W8=TUCTrIONSREPORT DOCMENTATION PAGE VIRpOw CONPLWnXO Form
1REPORT NUMBER j2GOVT ACCESSION NO . RECIOIENT'S CATALOG NUMBER

2441 NDA,01A1 3k __________

IL TITLE (MiE Skut*) As. _TYVP -OF REPORTSa PERIOD COVERED

summary Report - no specific
Highlights of the History of the reporting period

f-mbd-CalulusS. PECRFORMING Ono. REPORT "NDER

AUTHO~s)S. CONTRACT OR GRANT NUMBER(o)

J. Brkly RoserDAAG29-80-C-00 41

f. PERFORMING ORGANIZATION NME AND ADDRESS 10. P rRAN ELEMENT. PROJECT, TASK

Mathematics Research Center, University of AR A a WORK UNIT NUMER

610 Walnut Street Wisconsin Wfork Unit Number 6 -

Madison. Wisconsin 53706 Miscellaneous Topics
11. CONTROLLING OFFICE NAME AND ADDRESS It. REPORT DATE
U. S. Army Research Office October 1982
P.O. Box 12211 1S. NUMBER OF PAGES

Research Triangle Park, North Carolina 27709 26
14. MONITORING AGENCY RNK 0 ADOEj91 E m ~bs C'.tolfisi 0119..) IS. SECURITY CLAWS (of tis Mtor)

UNCIASSIFIED
I&DECLASSFICATION/ DWGRADING

SCM EDLE

1S. DISTRIBUTION STATEMENT (of Ibl Rsperl)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of A obis on .to Mstook a0, it ditioni hoe Reporl)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Cootoa~ban twrse side It assessoruad Ide.ily~ by block nowb")

)-calculus, combinatory calculus, foundations of programming

SO. ABSTRACT (Coofaw an romeo side it nosear sod)dsgnl* bp block member)

This in an account of not only the lambda-calculus but of its close

relative, the combinatory calculus. It begins with an introductory survey, so

that no previous knowledge is required. It is explained why these are of such

importance for computer software. The account is brought up to the present

time. it includes the shortest and simplest proof of the Church-Rosser
(continued)

DO,~ 173 D~tON F NO SES OSOLTEUNCLASSIFIED

SECURITY CLASSIVICATIO1 OF' TRIS PAGE (Ono ODe-O

ABSTRACT (continued)

theorem, which is not yet published and appeared in a limited printing in

August 1982. It includes a model of the cambinatory calculus, also not yet

published but available in 1982 in a limited printing. An introduction is

given to some revolutionary new developments of the combinatory calculus for

programming computers.

I

